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ABSTRACT. The aim of the research presented in this article was to determine the value of the friction
coefficient using a simple tribological test and to build an empirical model of friction with the use
of radial basis function artifi-cial neural networks. The friction tests were carried out on a specially
designed friction simulator that allows a sheet metal strip to be drawn between two fixed dies. The
test materials were sheets of Ti-6Al-4V titanium alloy with a thickness of 0.5 mm. The friction tests
were carried out with variable contact forces of counter-samples with rounded surfaces and in various
lubrication conditions. Mineral oils and bio-degradable oils with the addition of boric acid (5 wt %)
were tested. Based on the results of friction investigations, neural models of friction were built using
RBF artificial neural networks. The good properties of the RBF network 2:2-35-1:1 were confirmed by
a high value of the determination coefficient R2 = 0.9984 and a low value of the S.D. ratio equal to
0.0557. It was found that the COF value was the highest for the average values of both the nominal
pressure and kinematic viscosity. Over the entire range of nominal pressures applied, SAE10W-40
engine oil ensured the most effective reduction of the COF. The COF value was the highest for the
average values of both the nominal pressure and kinematic viscosity.
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titanium sheets.

1. INTRODUCTION

Sheet metal forming (SMF) is one of the most popular
methods of obtaining finished products, especially in
the automotive industry. The processes taking place
in the contact zone in SMF are influenced by many
factors, including the amount of normal pressures, the
macro- and microgeometry of the contact interface,
both the type and the viscosity of the lubricant, the
kind of die and workpiece material, the topography of
the sheet surface and tools, the dynamics of the loads,
physicochemical phenomena on the contact surface
and the processing temperature [T}, 2]. The factors de-
pendent on the technological parameters of the SMF
process include the values of normal pressure and
the sliding speed [3 4]. The value of the coefficient
of friction (COF) continuously changes during the
forming process due to the flattening and wear of the
roughness asperities on the tool surface [4, [5]. The
appropriate selection of the process parameters deter-
mines the fabrication of a product with the required
dimensional and shape accuracy.

Titanium sheets exhibit many problems in SMF.
Depending on the structure existing at a room tem-
perature, titanium alloys are divided into single-phase
« alloys, two-phase a4+ 8 and single-phase 3 alloys.
Each group of these alloys is characterised by differ-

ent mechanical and technological properties. Sheet
metals made of o+ ( alloys are characterised by good
mechanical properties, but have little susceptibility
to plastic deformation. Intense adhesive wear, low
abrasion resistance and high coefficients of friction
are regarded as the adverse effects of the tribological
behaviour of titanium sheets [6]. Mechanical sliding
between titanium alloy and steel dies may lead to wear
damage on the surface by disrupting the protective
oxide layer [7]. The basic wear mechanism in titanium
alloys is abrasion followed by adhesion and transfer
layer [§].

There are many friction tests used to simulate tribo-
logical phenomena in the different areas of drawpieces
in SMF. The strip drawing test (SDT) is the basic
tribological test to assess the friction phenomenon in
the sheet metal forming process. The SDT is assigned
to model the friction phenomenon between the punch
and the drawpiece wall as well as between the sheet
metal and the blankholder in the flange area of the
drawpiece. This test consists in pulling a metallic strip
of sheet metal placed between counter-samples with a
rounded [2] @] or flat [10, [11] shape. The parameters
influencing the change of the COF are the minimal
pressure, lubrication conditions, sliding speed and the
use of sheets with different surface topographies [12].
The SDT can be used for testing the influence of the
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viscosity of the lubricant and the mechanical proper-
ties of the sheet metal on the value of the COF of
coated and uncoated sheets [I3].

Physicochemical phenomena occurring in the con-
tact zone depend on the materials of the friction
pair and the chemical affinity of the bodies in con-
tact. During the friction process, friction connections
are created between surface asperities, which are de-
stroyed during sliding [14} [15]. The value of COF
is mainly determined by the shear strength of the
friction connections. The type of the frictional con-
nection depends on the materials of the friction pair,
in particular their shear strength. The basic method
of limiting the friction in plastic working is proper lu-
brication [16, [I7]. The lubricant, when applied to the
surface of a deformed material or tool, forms a thin
layer that partially or completely separates the sur-
faces in contact. The basic properties of the lubricant
include viscosity and surface free energy, which deter-
mine the performance of the lubricant under high unit
pressures [I8]. Due to the large variety of conditions
of plastic working processes, there are no universal
lubricants. Each process requires a separate approach
to the problem of lubrication and the use of an ap-
propriate lubricant. In recent years, an attempt has
been made to replace mineral oils with biodegradable
vegetable oils to which have been added nanoparticles
of various substances [IT], [I7, [19].

Due to the large number of factors that influence the
friction phenomenon, it is often difficult to interpret
the results without an appropriate empirical model in
the form of nonlinear regression [20], Response Surface
Methodology (RSM) [2I], Multivariate Adaptive Re-
gression Splines (MARS) polynomial response surface
models [22] or neural networks (ANN) [23H25]. The
mathematical models allow to explore mechanisms re-
lating controllable input variables to observed outputs.
ANNSs are a tool enabling the building of linear and
nonlinear models that solve complex classification and
regression tasks [20] 27]. One of the basic advantages
of neural networks is the fact that as a result of the
learning process, the network can acquire the ability
to predict output signals based on the observation of
the training set.

In this paper, friction investigations using a strip
drawing friction simulator have been carried out on
0.5-mm-thick Ti-6A1-4V titanium sheets. The effect
of the friction test parameters on the coefficient of
friction of the sheet metal have been analysed using
radial basis function (RBF) artificial neural networks
(ANN).

2. MATERIAL AND METHODS

Sheets of 0.5-mm-thick Ti-6Al-4V titanium alloy are
used as the test material. The chemical composition
of Ti-6A1-4V titanium alloy is listed in Table[I} The
basic mechanical properties of Ti-6Al-4V titanium
alloy are listed in Table
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Element wt. %
Al 5.5
A% 3.5
(0] < 0.2
Fe < 0.3
H < 0.0015
C < 0.08
N < 0.05
Ti remainder

TABLE 1. Chemical composition of the Ti-6A1-4V
titanium alloy examined (in wt. %).

Property (unit) Value
Young’s modulus (GPa) 115
Yield stress (MPa) 880
Ultimate tensile stress (MPa) 950
Elongation at break (%) 14
Hardness (HB) 334

TABLE 2. Selected mechanical parameters of the Ti-
6Al-4V titanium alloy.

The measurement of the surface roughness parame-
ters of as-received sheet metal was carried out using a
Bruker Contour GT 3D optical measuring tool accord-
ing to EN ISO 25178. The basic surface roughness
parameters are as follows: average height of a selected
area Sa = 0.23pm, maximum valley depth of the
selected area Sv = 1.10 pm, maximum peak height of
the selected area Sp = 1.14 pm, maximum height of
the selected area Sz = 2.03 pm.

The friction simulator (Fig. [I]) which performs the
SDT was mounted on a Zwick/Roell Z100 universal
tensile testing machine. The frame of the device was
mounted in the bottom grip of the machine. Sheet
metal strips with a width of w = 18 mm were used
as test material. The strips were drawn between
fixed cylindrical countersamples. The frame of the
friction simulator was mounted in the bottom grip
of the testing machine while one end of the sheet
metal strip was mounted in the upper grip of the
tensile machine. The pressure of the rollers on the
specimen was applied through a Teflon insert and a
spring working in compression mode. The pressure
of the spring on the countersamples was achieved by
reducing its height as a result of tightening a screw.
Six levels of nominal pressure, i.e. 75, 96, 112, 127,
139, 151 MPa, were considered. A set of rolls with an
average surface roughness of Ra = 0.32 um measured
along the generating line of rolls was used in the tests.

The COF has been evaluated according to Eq. .

Fr
= — 1
o (1)
where Frp is the friction force and F is the clamping
force.
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FIGURE 1. Schematic diagram of friction simulator: 1
— bottom grip of testing machine, 2 — base, 3 — upper
grip of testing machine, 4 — specimen, 5 — spring, 6 —
bolt, 7 — mandrel, 8 — fixing pin, 9 — teflon insert, 10
— working rollers.

Oil type Kinematic viscosity

Nk, mm? /s
Palm oil 5.72
Rape-seed oil 4.45
Engine oil SAE 10W-40 105.3
Hydraulic oil L-HM 46 44.2
Gear oil SAE 75W-85 64.6
Machine oil L-AN 46 43.9

TABLE 3. Kinematic viscosity of tested oils.

Prior to the friction test, both the specimens and
countersamples were cleaned using acetone. The fric-
tion tests were carried out in both dry and lubricated
conditions. Four types of synthetic oils and two types
of vegetable oils with the addition of boric acid H3BO3
were used in the lubricated condition. The types of
vegetable oils and the amount of boric acid added
(5 wt. %) were selected based on the literature re-
view [19, 28, 29]. The kinematic viscosity n of tested
oils provided by manufacturers were listed in Table [3]

The nominal contact pressure for the contact be-
tween the flat specimen and cylindrical counter-sample
was evaluated according to the formula [19]:

0.4182 . Fs - FE
=4/ — < = 2
p w- R (2)

where E is the Young’s modulus of the specimen
material and R = 10 is the radius of the counter-
sample.

In this paper, the radial basis function ANNs were
used to model the friction in the SDT.

A typical radial network is a structure containing

e an input layer onto which signals described by the
input vector x are fed,

e a hidden layer with radial neurons,

e an output layer, which only sums the weights of
signals from hidden neurons.

The RBF network analysed in the paper contains one
hidden layer with radial neurons.

Based on the data available on changes in the value
of the friction coefficient depending on the nominal
pressure (Table, a network of two input neurons and
one output neuron responsible for the COF value was
adopted for the analysis. The values of the nominal
pressure p and kinematic viscosity 7 of oils were
taken as input data. Kinematic viscosity n; = 0 was
assumed for dry friction conditions. The entire set of
training data contained 42 datasets. From this set,
10% of the data was randomly selected and assigned
to the validation set used for an independent control of
the learning process. The D data used in the network
learning process were normalised using the min-max
function:

(D — min)
max — min

DI = (Nmax - Nmin) + Nrnin (3)
which transforms the domain of variables (min, max)
to a new interval (Npyin = 0, Npax = 1).

Those networks with a different number of radial
neurons in the hidden layer (Fig. : 4, 8 and 12 were
analysed in the research. The following parameters
were used as basic indicators for assessing the quality
of the ANN model:

e root mean square error RMSE:

1 n
RMSE = [~ |a; — pj|?
n 2 |la; — pjl

(4)

e Pearson’s correlation coefficient R?:

e standard deviation ratio (S.D. ratio) as a ratio
of the standard deviation error and the standard
deviation of the real values of the variable being
explained.

Training the RBF network consists in determining
the centres and deviations of radial neurons. The
k-means method was used for assigning the centres.
The isotropic method was used to eliminate neu-ronal
deviation. The deviation (identical for all neurons)
is determined by the heuristic rule [30], taking into
account the number of centres and the size of the
space they occupy.

3. RESULTS AND DISCUSSION

There are no precise guidelines in the literature for
the selection of a neural network structure for the
analysis of a specific problem. The number of neurons
in the input and output layers is determined by the
number of parameters presented in the network during
the learning process. The selection of the number of
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Friction Coefficient of friction

conditions ' z5\ipy  p—96MPa p—112MPa p=—127MPa p=139MPa p = 151 MPa
dry friction 0.312 0.292 0.303 0.291 0.274 0.271
L-AN 46 0.272 0.250 0.243 0.230 0.214 0.217
L-HM 46 0.277 0.271 0.270 0.252 0.260 0.255
SAE10W40 0.240 0.215 0.217 0.214 0.194 0.205
SAE75W85 0.253 0.266 0.267 0.230 0.220 0.221
palm oil 0.226 0.241 0.233 0.223 0.229 0.216
rape-seed oil 0.263 0.257 0.254 0.237 0.221 0.212

TABLE 4. The values of COFs determined at different nominal pressure p.

hidden

input output

FIGURE 2. An RBF ANN with n-th inputs, H-th
radial basis functions and one output.

neurons in the hidden layer depends on the complexity
of the problem under consideration and it is difficult
to define apriori. Therefore, the construction of three
RBF ANNs with the number of neurons in the hidden
layer equal to 8, 17 and 35 was initially assumed. Tak-
ing into account the limited amount of learning data,
it was also assumed that the neural network would
provide data prediction at the R? level of at least
0.95. The selected statistics of the networks that were
analysed for the training set are presented in Table
Increasing the number of neurons in the hidden layer
clearly improved all the statistical parameters. The
determination coefficient R? of the network with the
largest number of hidden neurons RBF 2:2-35-1:1 met
the assumed requirements.

Moreover, the value of the S.D. ratio proves a very
good quality of the model. For a very good model, this
measure ranges from 0 to 0.1. If the value of the S.D.
ratio is greater than one, the use of the constructed
model is unjustified, because a more accurate estimate
of the value of the explained variable is its arithmetic
mean determined on the basis of the training set.

Response surfaces (Fig. [3) show the effect on the
prediction of the output variable in adjusting two (in-
dependent) input variables. The RBF ANNs were
utilised to study the influence of each of the two input
variables on the coefficient of friction. The network
architecture plays a clear role in the evaluation of
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the input parameters on the value of the COF. The
response of the RBF 2:2-8-1:1 network is clearly bipo-
lar. Low nominal pressure and low kinematic viscosity
values result in a high value of the COF (Fig. 3a).
If the input variables are large, the situation is the
opposite. The response surfaces of the RBF 2:2-17-1:1
(Fig. Bb) and RBF 2:2-35-1:1 (Fig. Bf) networks are
more similar. The concentration of the largest values
of the coefficient of friction occurs for n, = 0 (dry fric-
tion) for average values of 7 (gear oil SAE 75W-85)
and average values of nominal pressure. The RBF 2:2-
17-1:1 network model predicts values of the friction
coefficient exceeding the lower range of the normalised
COF value. Increasing the number of neurons in the
hidden layer to 35 resulted in an improvement in the
prediction, however, the network predicts negative
values of COF (up to a normalised value of “0.0617).
The reason for this is the large fluctuations in the
response surface associated with a relatively small
number of training sets.

It is well known that increasing the value of nomi-
nal pressure intensifies the flattening of the roughness
asperities of sheet metals by the surface of the tool.
Under such conditions, there is a change in the to-
pography of the sheet surface and the volume of the
oil pockets. The oil pockets perform the role of oil
reservoir and cause a decrease in the coefficient of
friction. The as-received surface (Fig. exhibits a
regular grain structure with a quite smooth surface
of the grains. Flattening of the sheet surface was
observed in both dry and lubricated conditions.

The main friction mechanism under a pressure of
75 — 112 MPa and both dry and lubricated conditions
was surface flattening (Figs. . After increas-
ing the pressure to the value of 139 MPa and above,
intensification of flattening and clear ploughing was
observed (Fig. caused by the high pressure and,
at the same time, there was adhesion of material of
the plastically deformed surface asperities to the hard
surface of the tool. Under these conditions, the sheet
surface deteriorates as a result of the production of
scratches on the surface of the sheet metal. In the case
of lubricated conditions, flattening under the whole
range of pressures applied was less intensive than in
the case of the corresponding dry friction conditions.
The flattening of surface asperities in the case of lu-
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FIGURE 3. Response surfaces of the neural networks: a) RBF 2:2-8-1:1, b) RBF 2:2-17-1:1, ¢) RBF 2:2-35-1:1.

Parameter RBF 2:2-8-1:1 RBF 2:2-17-1:1 RBF 2:2-35-1:1
RMSE 0.1608 0.0882 0.0125
S.D. ratio 0.7182 0.3940 0.0557
Correlation R? 0.6958 0.9190 0.9984

TABLE 5. Selected statistics of the ANN’s analysed.
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FIGURE 4. SEM micrographs showing (a) the as-received surface in different magnifications, (b) the specimen surface
tested in dry friction at 96 MPa, (c) the specimen surface tested in lubricated conditions using SAE 10W-40 engine
oil at 96 MPa, (d) the specimen surface tested in dry friction at 139 MPa, (e) the specimen surface tested in dry
friction at 112 MPa under lubricated conditions using SAE 10W-40 engine oil.
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F1Gure 5. Effect of nominal pressure on the variation
in the functional volume parameters Vmc, Vvc, Vmp
and Vvv under dry friction conditions.

bricated conditions causes an unfavourable reduction
in the volume of the oil pockets (Fig. .

With an increase in nominal pressure, there is a
clear trend to a decreasing value of the core material
volume Vmc, the core void volume Vvc and peak
material volume Vmp (Fig. . An increase in the peak
material volume and the dale void volume (Vvv) above
a pressure of 139 MPa can be related to the ploughing
of the sheet surface (Fig. [Id). Under these conditions,
core material volume Vvc and core void volume Vmec
stabilise. Scratching of deep grooves increases the
friction force. Moreover, deep longitudinal grooves,
being the open oil pockets, are able to assure sufficient
lubricant pressure [31]. The asperities of the roughness
deform until the resulting bearing surface is able to
transmit the pressure. When load is applied, the
asperity features are deformed until the increased
bearing area is sufficient to support the applied load.

4. CONCLUSIONS

In this paper, the RBF ANNs were used to investigate
the interaction between nominal pressure and kine-
matic viscosity of the lubricant and their influence
on the value of the coefficient of friction of Ti-6Al-4V
titanium alloy tested in the strip drawing test. The
following conclusions are drawn from the research:

o the value of the coefficient of friction was between
0.194 and 0.312, depending on the lubrication con-
ditions,

e over the entire range of the nominal pressures ap-
plied, SAE 10W-40 engine oil ensured the most
effective reduction of the COF,

e the neural network with the highest value of the
coefficient of determination was RBF 2:2-35-1:1,

e an increase in the number of radial neurons in the
hidden layer caused an increase in the value of the
determination coefficient and a reduction in the

S.D. ratio as compared to RBF 2:2-17-1:1 and RBF
2:2-8-1:1,

o the COF value was the highest for average values of
both the nominal pressure and kinematic viscosity,

e in the range of pressure between 75 and 112 MPa,
the flattening mechanism dominates in both dry
and lubricated conditions,

e an intensive flattening of the surface asperities of
Ti-6Al-4V under lubricated conditions begins to
reduce the oil pockets,

e an increase of nominal pressure during the strip
drawing tests of Ti-6Al-4V causes a trend to a
reduction of core material volume, core void volume
and peak material volume.
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